3.573 \(\int \frac{\sqrt{a+b x^n+c x^{2 n}}}{x^2} \, dx\)

Optimal. Leaf size=149 \[ -\frac{\sqrt{a+b x^n+c x^{2 n}} F_1\left (-\frac{1}{n};-\frac{1}{2},-\frac{1}{2};-\frac{1-n}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{x \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1}} \]

[Out]

-((Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[-n^(-1), -1/2, -1/2, -((1 - n)/n), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]),
 (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(x*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + S
qrt[b^2 - 4*a*c])]))

________________________________________________________________________________________

Rubi [A]  time = 0.149699, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {1385, 510} \[ -\frac{\sqrt{a+b x^n+c x^{2 n}} F_1\left (-\frac{1}{n};-\frac{1}{2},-\frac{1}{2};-\frac{1-n}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{x \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^n + c*x^(2*n)]/x^2,x]

[Out]

-((Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[-n^(-1), -1/2, -1/2, -((1 - n)/n), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]),
 (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(x*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + S
qrt[b^2 - 4*a*c])]))

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^n+c x^{2 n}}}{x^2} \, dx &=\frac{\sqrt{a+b x^n+c x^{2 n}} \int \frac{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}}{x^2} \, dx}{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}}\\ &=-\frac{\sqrt{a+b x^n+c x^{2 n}} F_1\left (-\frac{1}{n};-\frac{1}{2},-\frac{1}{2};-\frac{1-n}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{x \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}}\\ \end{align*}

Mathematica [B]  time = 0.662031, size = 365, normalized size = 2.45 \[ \frac{b n x^n \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^n}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{n-1}{n};\frac{1}{2},\frac{1}{2};2-\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )-2 a (n-1) n \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^n}{\sqrt{b^2-4 a c}+b}} F_1\left (-\frac{1}{n};\frac{1}{2},\frac{1}{2};\frac{n-1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )+2 (n-1) \left (a+x^n \left (b+c x^n\right )\right )}{2 (n-1)^2 x \sqrt{a+x^n \left (b+c x^n\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*x^n + c*x^(2*n)]/x^2,x]

[Out]

(2*(-1 + n)*(a + x^n*(b + c*x^n)) - 2*a*(-1 + n)*n*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*
c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[-n^(-1), 1/2, 1/2, (-1 + n)/n, (
-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + b*n*x^n*Sqrt[(b - Sqrt[b^2 - 4*a*c] +
 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[(-
1 + n)/n, 1/2, 1/2, 2 - n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])])/(2*(-
1 + n)^2*x*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]  time = 0.064, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{2}}\sqrt{a+b{x}^{n}+c{x}^{2\,n}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x)

[Out]

int((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2 \, n} + b x^{n} + a}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)/x^2, x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x^{n} + c x^{2 n}}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x**n+c*x**(2*n))**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*x**n + c*x**(2*n))/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2 \, n} + b x^{n} + a}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)/x^2, x)